The Salmonella FlgA protein, a putativeve periplasmic chaperone essential for flagellar P ring formation.
نویسندگان
چکیده
P ring is a periplasmic substructure of the flagellar basal body and is believed to connect with the peptidoglycan layer in Salmonella. Two flagellar genes, flgA and flgI, are known to be indispensable for P ring formation. The flgI gene encodes the component protein of the P ring. However, the role of the flgA gene product in P ring assembly remained unknown. Here, evidence is presented that FlgA is synthesized as a precursor form and exported via the Sec secretory pathway into the periplasmic space where P ring formation takes place. Overproduction of the FlgI protein led flgA mutants to form flagella with a P ring, suggesting that FlgA plays an auxiliary role in P ring assembly. Far-Western blot analysis revealed that FlgA binds in vitro to both FlgI and FlgA itself. Though a direct FlgI-FlgI interaction in the absence of FlgA could not be demonstrated, an indirect or direct interaction between the FlgI proteins was observed in the presence of FlgA. FlgA alone was very unstable in vivo, but co-expression with FlgI could stabilize FlgA. This suggests the presence of FlgA-FlgI interaction in vivo. On the basis of these results, a hypothesis is proposed that FlgA acts as a periplasmic chaperone, which assists a polymerization reaction of FlgI into the P ring through FlgA-FlgI interaction.
منابع مشابه
Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica
A periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. The mechanism of chaperone-mediated P-ring formation is poorly understood. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions. An ...
متن کاملPeptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium.
Because the rod structure of the flagellar basal body crosses the inner membrane, the periplasmic space, and the outer membrane, its formation must involve hydrolysis of the peptidoglycan layer. So far, more than 10 genes have been shown to be required for rod formation in Salmonella typhimurium. Some of them encode the component proteins of the rod structure, and most of the remaining genes ar...
متن کاملAssembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex
The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unkn...
متن کاملCo-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli
Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....
متن کاملTranscriptional analysis of the flagellar regulon of Salmonella typhimurium.
In Salmonella typhimurium, nearly 50 genes are involved in flagellar formation and function and constitute at least 13 different operons. In this study, we examined the transcriptional interaction among the flagellar operons by combined use of Mu d1(Apr Lac) cts62 and Tn10 insertion mutants in the flagellar genes. The results showed that the flagellar operons can be divided into three classes: ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 146 ( Pt 5) شماره
صفحات -
تاریخ انتشار 2000